Муниципальное общеобразовательное учреждение Бологовская средняя общеобразовательная школа

PACCMOTPEHO

на заседании ШМО Руководитель ШМО $\underbrace{\text{МИС}}_{\bullet}$ — Христофорова М.Н. Протокол № $\underbrace{01}_{\bullet}$ от « $\underbrace{26}$ » $\underbrace{08}_{\bullet}$ 2019г.

СОГЛАСОВАНО

Заместитель директора по УВР *урац* В.А. Красноумова

«30» 08 2019г.

УТВЕРЖДЕНО

Директор Л.В. Яковлева

Приказ № <u>66/01</u> от «<u>30</u> » <u>08</u> 2019г.

РАБОЧАЯ ПРОГРАММА ПО ЭЛЕКТИВНОМУ КУРСУ ПО БИОЛОГИИ «РЕШЕНИЕ ГЕНЕТИЧЕСКИХ ЗАДАЧ» 10 КЛАСС ФК ГОС СОО НА 2019 – 2020 УЧЕБНЫЙ ГОД

УРОВЕНЬ ИЗУЧЕНИЯ ПРЕДМЕТА: БАЗОВЫЙ УЧИТЕЛЬ: СИМОНОВА ЕЛЕНА ВИТАЛЬЕВНА

Пояснительная записка.

Предлагаемый элективный курс предназначен для обучающихся 10 классов.

Элективный курс по биологии «Решение генетических задач» составлен на основе Программ элективных курсов «Биология. 10-11 классы. Профильное обучение», сборник 4, Сивоглазов В.И., Пасечник В.В., Москва, «Дрофа», 2006 г

Элективный курс включает материал по разделу биологии «Основы генетики. Решение генетических задач» и расширяет рамки учебной программы. Важная роль отводится практической направленности данного курса как возможности качественной подготовки к заданиям ЕГЭ из части С. Генетические задачи включены в кодификаторы ЕГЭ по биологии, причем в структуре экзаменационной работы считаются заданиями повышенного уровня сложности.

Программа курса рассчитана на 17 часов – учебный год. Она реализуется за счет времени, отводимого на компонент образовательного учреждения. Распределение времени на каждую тему является примерным. Учитель может по своему усмотрению изменять число часов на изучение той или иной темы.

Курс демонстрирует связь биологии, в первую очередь, с медициной, селекцией. Межпредметный характер курса позволит заинтересовать школьников практической биологией, убедить их в возможности применения теоретических знаний для диагностики и прогнозирования наследственных заболеваний, успешной селекционной работы, повысить их познавательную активность, развить аналитические способности.

Как известно, количества часов (1 час в неделю), отводимых на изучение курса биологии в старших классах, недостаточно. Это приводит к тому, что некоторые темы курса биологии учащиеся осваивают фрагментарно, остаются пробелы в знаниях. И как показывает практика, одной из таких тем является «Решение генетических задач».

Важное место в курсе занимает практическая направленность изучаемого материала, реализация которой формирует у обучающихся практические навыки работы с исследуемым материалом, выступает в роли источника знаний и способствует формированию научной картины мира.

Цели элективного курса: вооружение обучающихся знаниями по решению генетических задач, которые необходимы для успешной сдачи экзамена (часть С ЕГЭ); раскрытии роли генетики в познании механизмов наследования генов и хромосом, изменчивости и формирования признаков.

Задачи курса:

- формировать представление о методах и способах решения генетических задач для правильного их применения при решении задания части С ЕГЭ
- развивать общеучебные умения (умения работать со справочной литературой, сравнивать, выделять главное, обобщать, систематизировать материал, делать выводы), развивать самостоятельность и творчество при решении практических задач;
- воспитание личностных качеств, обеспечивающих успешность творческой деятельности (активности, увлеченности, наблюдательности, сообразительности), успешность существования и деятельности в ученическом коллективе Для успешного решения генетических задач обучающиеся должны свободно ориентироваться в основных генетических понятиях и законах, знать специальную терминологию и буквенную символику. Умение решать генетические задачи является важным показателем овладения учащимися теоретических знаний по генетике. Генетические задачи не только конкретизируют и углубляют теоретические знания

- обучающихся, но и показывают практическую значимость представлений о механизмах наследования генов и хромосом, изменчивости и формирования признаков. Для успешного решения задач по генетике следует уметь выполнять некоторые несложные операции и использовать методические приемы.
- 1. Прежде всего необходимо внимательно изучить условие задачи. Даже те учащиеся, которые хорошо знают закономерности наследования и успешно решают генетические задачи, часто допускают грубые ошибки, причинами которых является невнимательное или неправильное прочтение условия.
- 2. Следующим этапом является определение типа задачи. Для этого необходимо выяснить, сколько пар признаков рассматривается в задаче, сколько пар генов кодирует эти признаки, а также число классов фенотипов, присутствующих в потомстве от скрещивания гетерозигот или при анализирующем скрещивании, и количественное соотношение этих классов. Кроме того, необходимо учитывать, связано ли наследование признака с половыми хромосомами, а также сцеплено или независимо наследуется пара признаков. Относительно последнего могут быть прямые указания в условии. Также, свидетельством о сцепленном наследовании может являться соотношение классов с разными фенотипами в потомстве.
- 3. **Выяснение генотипов** особей, неизвестных по условию, является **основной методической операцией**, необходимой для решения генетических задач. При этом решение всегда надо начинать с особей, несущих рецессивный признак, поскольку они гомозиготны и их генотип по этому признаку однозначен **aa**. Выяснение генотипа организма, несущего доминантный признак, является более сложной проблемой, потому что он может быть гомозиготным (**AA**) или гетерозиготным (**Aa**).
- 4. Конечным этапом решения является запись схемы скрещивания (брака) в соответствии с требованиями по оформлению, а также максимально подробное изложение всего хода рассуждений по решению задачи с обязательным логическим обоснованием каждого вывода. Отсутствие объяснения даже очевидных, на первый взгляд, моментов может быть основанием для снижения оценки на экзамене.

Однако опыт показывает, что большинство учащихся испытывает значительные трудности при решении генетических задач.

МЕТОДЫ ОЦЕНИВАНИЯ

Устный ответ

«Зачет» ставится, если ученик:

- 1. Показывает глубокое и полное знание и понимание всего объёма программного материала; полное понимание сущности рассматриваемых понятий, явлений и закономерностей, теорий, взаимосвязей;
- 2. Умеет составить полный и правильный ответ на основе изученного материала; выделять главные положения, самостоятельно подтверждать ответ конкретными примерами, фактами; самостоятельно и аргументировано делать анализ, обобщения, выводы. Устанавливать межпредметные (на основе ранее приобретенных знаний) и внутрипредметные связи, творчески применять полученные знания в незнакомой ситуации. Последовательно, чётко, связно, обоснованно и безошибочно излагать учебный материал; давать ответ в логической последовательности с использованием принятой терминологии; делать собственные выводы; формулировать точное определение и истолкование основных понятий, законов, теорий; при ответе не повторять дословно текст учебника; излагать материал литературным языком; правильно и обстоятельно отвечать на дополнительные вопросы учителя. Самостоятельно и рационально использовать наглядные пособия, справочные

- материалы, учебник, дополнительную литературу, первоисточники; применять систему условных обозначений при ведении записей, сопровождающих ответ; использование для доказательства выводов из наблюдений и опытов;
- 3. Самостоятельно, уверенно и безошибочно применяет полученные знания в решении проблем на творческом уровне; допускает недочёты, который легко исправляет по требованию учителя; записи, сопровождающие ответ, соответствуют требованиям.

«Не зачет» ставится, если ученик:

- 1. Не усвоил и не раскрыл основное содержание материала;
- 2. Не делает выводов и обобщений.
- 3. Не знает и не понимает значительную или основную часть программного материала в пределах поставленных вопросов;
- 4. Имеет слабо сформированные и неполные знания и не умеет применять их к решению конкретных вопросов и задач по образцу;
- 5. При ответе (на один вопрос) допускает грубых ошибок, которые не может исправить даже при помощи учителя.

Примечание. По окончании устного ответа учащегося педагогом даётся краткий анализ ответа, объявляется мотивированная оценка. Возможно привлечение других учащихся для анализа ответа, самоанализ, предложение оценки.

Оценка выполнения практических работ

"Зачет" ставится, если ученик:

- 1. Правильно определил цель опыта.
- 2. Выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений.
- **3.** Самостоятельно и рационально выбрал и подготовил для опыта необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью.
- **4.** Научно грамотно, логично описал наблюдения и сформулировал выводы из опыта. В представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, графики, вычисления и сделал выводы.
- **5.** Проявляет организационно-трудовые умения (поддерживает чистоту рабочего места и порядок на столе, экономно использует расходные материалы).
- **6.** Эксперимент осуществляет по плану с учетом техники безопасности и правил работы с материалами и оборудованием.

"Не зачет" ставится, если ученик:

- 1. Не определил самостоятельно цель опыта; выполнил работу не полностью, не подготовил нужное оборудование и объем выполненной части работы не позволяет сделать правильных выводов.
- 2. Или опыты, измерения, вычисления, наблюдения производились неправильно.
- 3. Или в ходе работы и в отчете обнаружились в совокупности все недостатки, отмеченные в требованиях к оценке.
- 4. Допускает две (и более) грубые ошибки в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые не может исправить даже по требованию учителя.

Критерии выставления оценок за проверочные тесты.

- 1. Задание части 1 1-2 балл
- 2. Задание части 2 0-3 балла.

Место курса в учебном плане

Данная программа элективного курса предназначена для учащихся профильных классов естественно-научного направления средних школ, изучающих биологии 1 час в неделю. Известно, что одна из приоритетных задач "Концепции модернизации российского образования» - разработка системы специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы. Профильное обучение должны обеспечить углубленную подготовку старшеклассников по выбранным ими дисциплинам и дать возможность "разгрузить" их по непрофильным предметам. Ставится задача создания "системы специализированной подготовки в старших классах общеобразовательной школы, ориентированной на индивидуальное обучение и социализацию обучения".

Предполагаемый элективный курс углубляет и расширяет рамки действующего базового курса биологии, имеет профессиональную направленность. Он предназначен для учащихся 10-х классов, проявляющих интерес к генетике. Изучение элективного курса может проверить целесообразность выбора учащимся профиля дальнейшего обучения, направлено на реализацию личностно-ориентированного учебного процесса, при котором максимально учитываются интересы, способности и склонности старшеклассников. Курс опирается на знания и умения учащихся, полученные при изучении биологии. В процессе занятий предполагается закрепление учащимися опыта поиска информации, совершенствование умений делать доклады, сообщения, закрепление навыка решения генетических задач различных уровней сложности, возникновение стойкого интереса к одной из самых перспективных биологических наук — генетике.

Программа построена с учетом основных принципов педагогики сотрудничества и сотворчества, является образовательно-развивающей и направлена на гуманизацию и индивидуализацию педагогического процесса.

Программа рассчитана на 17 часа. Курс включает теоретические занятия и практическое решение задач.

Содержание программы

Курс предназначен для общеобразовательной подготовки школьников, которые в дальнейшем отдадут предпочтение экзамену по биологии, имеет образовательновоспитательный характер и носит практико-ориентированный характер. Курс позволяет решить многие теоретические и прикладные задачи (прогнозирование проявления наследственных заболеваний, групп крови человека, вероятность рождения ребенка с изучаемым или альтернативным ему признаком и др).

Введение (1 ч). Цели и задачи курса. Актуализация ранее полученных знаний по разделу биологии «Основы генетики».

Тема 1. Общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков (1 ч). Генетика — наука о закономерностях наследственности и изменчивости. Наследственность и изменчивость — свойства организмов. Генетическая терминология и символика. Самовоспроизведение — всеобщее свойство живого. Половое размножение. Мейоз, его биологическое значение. Строение и функции хромосом. ДНК — носитель наследственной информации. Значение постоянства числа и формы хромосом в клетках. Ген. Генетический код.

Демонстрации: модель ДНК и РНК, таблицы «Генетический код», «Мейоз», моделиаппликации, иллюстрирующие законы наследственности, перекрест хромосом; хромосомные аномалии человека и их фенотипические проявления.

Тема 2. Законы Менделя и их цитологические основы (3 ч). История развития генетики. Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Закон доминирования. Закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание. Закон независимого комбинирования. Фенотип и генотип. Цитологические основы генетических законов наследования.

Практическая работа № 1 «Решение генетических задач на моногибридное скрещивание».

Практическая работа № 2 «Решение генетических задач на дигибридное скрещивание». **Демонстрации**: решетка Пеннета, биологический материал, с которым работал Г.Мендель.

Тема 3. Взаимодействие аллельных и неаллельных генов. Множественный аллелизм. Плейотропия (3 ч). Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование) и неаллельных

(комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Условия, влияющие на результат взаимодействия между генами.

Практическая работа № 3 «Решение генетических задач на взаимодействие аллельных и неаллельных генов».

Практическая работа № 4 «Определение групп крови человека — пример кодоминирования аллельных генов».

Демонстрации: рисунки, иллюстрирующие взаимодействие аллельных и неаллельных генов

- окраска ягод земляники при неполном доминировании;
- окраска меха у норок при плейотропном действии гена;
- окраска венчика у льна пример комплементарности
- окраска плода у тыквы при эпистатическом взаимодействии двух генов
- окраска колосковой чешуи у овса пример полимерии

Тема 4. Сцепленное наследование признаков и кроссинговер (2 ч). Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов. Генетические карты хромосом. Цитологические основы сцепленного наследования генов, кроссинговера.

Практическая работа № 5 «Решение генетических задач на сцепленное наследование признаков».

Демонстрации: модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; генетические карты хромосом.

Тема 5. Наследование признаков, сцепленных с полом. Пенетрантность (2

ч). Генетическое определение пола. Генетическая структура половых хромосом. Гомогаметный и гетерогаметный пол. Наследование признаков, сцепленных с полом. Пенетрантность – способность гена проявляться в фенотипе.

Практическая работа № 6 «Решение генетических задач на сцепленное с полом наследование, на применение понятия - пенетрантность».

Демонстрации: схемы скрещивания на примере классической гемофилии и дальтонизма человека

Тема 6. Генеалогический метод (2 ч). Генеалогический метод — фундаментальный и универсальный метод изучения наследственности и изменчивости человека. Установление генетических закономерностей у человека. Пробанд. Символы родословной.

Практическая работа № 7 «Составление родословной».

Демонстрации: таблица «Символы родословной», рисунки, иллюстрирующие хромосомные аномалии человека и их фенотипические проявления.

Тема 7. Популяционная генетика. Закон Харди-Вейнберга (2 ч). Популяционностатистический метод — основа изучения наследственных болезней в медицинской генетике. Закон Харди-Вейнберга, используемый для анализа генетической структуры популяций.

Практическая работа № 8 «Анализ генетической структуры популяции на основе закона Харди-Вейнберга»

Итоговое занятие (2 ч). Подведение итогов. Презентация учащимися проектных работ.

Личностные УУД

- самоопределение личностное, профессиональное, жизненное самоопределение;
- смыслообразование установление учащимися связи между целью учебной деятельности и ее мотивом, другими словами, между результатом учения и тем, что побуждает деятельность, ради чего она осуществляется. Учащийся должен задаваться вопросом о том, «какое значение, смысл имеет для меня учение», и уметь находить ответ на него;
- нравственно-этическая ориентация действие нравственно этического оценивания усваиваемого содержания, обеспечивающее личностный моральный выбор на основе социальных и личностных ценностей.

Регулятивные УУД

- целеполагание как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено учащимся, и того, что еще неизвестно;
- планирование определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий;
- оценка выделение и осознание учащимся того, что уже усвоено и что еще подлежит усвоению, оценивание качества и уровня усвоения;
- саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию выбору в ситуации мотивационного конфликта и к преодолению препятствий.

Познавательные УУД

Общеучебные универсальные действия:

- самостоятельное выделение и формулирование познавательной цели;
- поиск и выделение необходимой информации; применение методов информационного поиска, в том числе с помощью компьютерных средств;
- структурирование знаний;
 - Логические универсальные действия:
- анализ;
- подведение под понятие, выведение следствий;
- установление причинно-следственных связей;
- выдвижение гипотез и их обоснование.
 - Постановка и решение проблемы:
- формулирование проблемы;
- самостоятельное создание способов решения проблем творческого и поискового характера.

Коммуникативные УУД

• планирование учебного сотрудничества с учителем и сверстниками — определение целей, функций участников, способов взаимодействия; умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации, владение монологической и диалогической формами речи в соответствии с грамматическими и синтаксическими нормами родного языка.

Календарно-тематический планирование

№ п/п	Тема урока	Дата	
		про	ведения
1.	Введение.	по плану	по факту
	Тема 1. Общие сведения о молекулярных		
	и клеточных механизмах наследования		
	генов и формирования признаков.		
	Генетическая терминология и символика.		
2.	Тема 2. Законы Менделя и их		
	цитологические основы.		
	Моногибридное скрещивание. Дигибридное		
	и полигибридное скрещивание.		
3.	Практическая работа № 1 «Решение		
	генетических задач на моногибридное		
	скрещивание».		
4.	Практическая работа № 2 «Решение		
	генетических задач на дигибридное		
	скрещивание».		
5.	Тема 3. Взаимодействие аллельных и		
	неаллельных генов. Множественный		
	аллелизм. Плейотропия. Взаимодействие		
	аллельных (доминирование, неполное		
	доминирование, кодоминирование) и		
	неаллельных (комплементарность, эпистаз и		
	полимерия) генов в определении признаков.		
6.	Практическая работа № 3 «Решение		
	генетических задач на взаимодействие		
	аллельных и неаллельных генов».		
7.	Практическая работа № 4 «Определение		
	групп крови человека – пример		
	кодоминирования аллельных генов».		
	•		
8.			

	Тема 4. Сцепленное наследование	
	признаков и кроссинговер (2	
	ч). Хромосомная теория наследственности.	
	Группы сцепления генов. Сцепленное	
	наследование признаков.	
9.	Практическая работа № 5 «Решение	
) •	генетических задач на сцепленное	
	наследование признаков».	
	name apromotor.	
10.	Тема 5. Наследование признаков,	
	сцепленных с полом.	
	Пенетрантность. Наследование	
	признаков, сцепленных с полом.	
11.	Практическая работа № 6 «Решение	
	генетических задач на сцепленное с полом	
	наследование, на применение понятия -	
	пенетрантность».	
12.	Тема 6. Генеалогический	
	метод. Установление генетических	
	закономерностей у человека. Пробанд.	
	Символы родословной.	
13.	Практическая работа № 7 «Составление	
15.	родословной».	
	p o de come a management	
14.	Тема 7. Популяционная генетика. Закон	
	Харди-Вейнберга. Популяционно-	
	статистический метод – основа изучения	
	наследственных болезней в медицинской	
	генетике.	
15.	Практическая работа № 8 «Анализ	
	генетической структуры популяции на	
	основе закона Харди-Вейнберга».	
16.	Итоговое занятие. Подведение итогов.	
17.	Презентация учащимися проектных работ.	

УМК элективного курса

- 1. Нормативно-инструктивное обеспечение преподавания учебной дисциплины «Биология»:
- Федеральный компонент государственных стандартов основного общего и среднего (полного) общего образования по биологии (приказ МО России №1089 от 5 марта 2004 г.);
- Типовые учебные программы курса биологии для общеобразовательных учреждений соответствующего профиля обучения, допущенные или рекомендованные МО и Н РФ;
- Примерные программы основного общего и среднего (полного) общего образования по биологии;

- Перечень учебного оборудования по биологии для средней школы;
- Инструктивно-методические письма «О преподавании учебной дисциплины в общеобразовательных учреждениях области»;
- -Методические рекомендации по использованию регионального компонента содержания биологического образования.
- 2. Программно-методическое и дидактическое обеспечение преподавания курса: Электронные пособия
- 1) Лабораторный практикум. Биология 6-11 класс (учебное электронное издание), Республиканский мультимедиа центр, 2004;
- 2) Образовательный комплекс «1С:Школа. Биология, 10 кл.». Создан на основе УМК под редакцией проф. И. Н. Пономаревой и содержит материалы учебника И.Н. Пономаревой «Биология, 10 кл.» (М., Издательский центр «Вентана-Граф»). Разработчик «1С», 2009;
- 3) Серия «Электронные уроки и тесты», Биология в школе. Наследование признаков; Биология в школе. Генетическая изменчивость и эволюция. Разработчик «Просвещение-МЕДИА»; «Новый Диск», YDP Interactive Publishing, 2007;
- 4) Интернет-ресурсы на усмотрение учителя и обучающихся Кроме того, при ведении курса в 10 классе на каждом уроке используется серия мультимедийных уроков и презентаций, разработанная учителем Мяделец М.В. и материалы из «Единой коллекции Цифровых Образовательных Ресурсов» (набор цифровых ресурсов к учебникам линии Пономаревой И.Н.) (http://school-collection.edu.ru/)

Литература для учителя:

- 1) Батуев А.С., Гуленкова М.А., Еленевский А.Г. Биология. Большой справочник для школьников и поступающих в вузы. М.:Дрофа, 2004;
- 2) Болгова И.В. Сборник задач по Общей биологии для поступающих в вузы. М.: «Оникс 21 век» «Мир и образование», 2005;
- 3) Валовая М.А., Соколова Н.А., Каменский Ф.Ф. Биология: полный курс общеобразовательной средней школы. М., 2002.
- 4) Казначеев В.П. Здоровье нации. Просвещение. Образование. Кострома, 1996.
- 5) Коджаспирова Г.М., Коджаспиров А.Ю. Педагогический словарь М.,2001.
- 6) Козлова Т.А., Кучменко В.С. Биология в таблицах 6-11 классы. Справочное пособие. М.: Дрофа, 2002;
- 16)Рувинский А.О., Высоцкая Л.В., Глаголев С.М. Общая биология: Учебник для 10-11 классов школ с углубленным изучением биологии. М.: Просвещение, 1993. 544с.

Литература для обучающихся:

- 1) Батуев А.С., Гуленкова М.А., Еленевский А.Г. Биология. Большой справочник для школьников и поступающих в вузы. М.:Дрофа, 2004;
- 2) Биологический энциклопедический словарь. М., 1989. 11
- 3) Биология. Учебник для 10 класса (базовый уровень) /Под ред. И.Н. Пономаревой. М., 2007.
- 4) Биология .ЕГЭ. Контрольные измерительные материалы./Составители: Г.С. Калинова, В.З. Резникова, А.Н. Мягкова. М., 2007.
- 5) Валовая М.А., Соколова Н.А., Каменский Ф.Ф. Биология: полный курс общеобразовательной средней школы. М., 2002.
- 6) Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология в вопросах и ответах. Минск, 1997.
- 7) Машкова Н.Н. Биология. Пособие для полготовки к ЕГЭ. СПб. 2004.

- 8) Основы общей биологии: 9 класс/ Под ред. И.Н. Пономаревой. М.,1996.
- 9) Пасечник В.В., Кучменко В.С. и др. Биология: Сборник задач и заданий с ответами: 9-11 классы. М., 1999.
- 10) Петров К.М. Экология человека и культура. СПб. 1999.
- 11) Пономарева И.Н. Экология. Книга для учителя. М., 2006.
- 12) Пономарева И.Н. , Соломин В.П., Сидельникова Г.Д. Общая методика обучения биологии. М., 2007.
- 13) Пономарева И.Н., Соломин В.П. Экологическое образование в российской школе: история, теория, методика. СПб., 2005
- 14) Фросин В.Н., Сивоглазов В.И. Готовимся к единому государственному экзамену. Общая биология. –М.: Дрофа, 2004. 216 с.
- 15) Барабанщиков Б.И., Сапаев Е.А. Сборник задач по генетике Казань, издательство КГУ, 1988

Адреса электронных ресурсов:

www.bio.1september.ru – газета «Биология» -приложение к «1 сентября»

www.bio.nature.ru – научные новости биологии

www.edios.ru – Эйдос – центр дистанционного образования

www.km.ru/education - учебные материалы и словари на сайте «Кирилл и Мефодий» http://www.informika.ru - электронный учебник "Биология" (вер. 2.0 - 2000) из цикла "Обучающие энциклопедии". - Учебный курс, контрольные вопросы.

<u>http://www.college.ru</u> - раздел "Открытого колледжа" по Биологии. Учебник, модели, Опline тесты, учителю.

<u>http://www.biodan.narod.ru</u> - "БиоДан" - Биология от Даны. Новости и обзоры по биологии, экологии. Проблемы и теории. Есть тематические выпуски, фотогалереи, биографии великих ученых, спецсловарь.

<u>http://www.bio.1september.ru</u> - для учителей "Я иду на урок Биологии". Статьи по: Ботанике, Зоологии, Биологии - Человек, Общей биологии, Экологии.

Материалы из «Единой коллекции Цифровых Образовательных Ресурсов» (набор цифровых ресурсов к учебникам линии Пономаревой И.Н.) (http://school-collection.edu.r

Результаты освоения курса и система их оценки В результате изучения программы элективного курса учащиеся должны

- общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков; специфические термины и символику, используемые при решении генетических задач
- законы Менделя и их цитологические основы
- виды взаимодействия аллельных и неаллельных генов, их характеристику; виды скрещивания
- сцепленное наследование признаков, кроссинговер
- наследование признаков, сцепленных с полом
- генеалогический метод, или метод анализа родословных, как фундаментальный и универсальный метод изучения наследственности и изменчивости человека
- популяционно-статистический метод основу популяционной генетики (в медицине применяется при изучении наследственных болезней)

Уметь:

Знать:

- объяснять роль генетики в формировании научного мировоззрения; содержание генетической задачи;
- применять термины по генетике, символику при решении генетических задач;

- решать генетические задачи; составлять схемы скрещивания;
- анализировать и прогнозировать распространенность наследственных заболеваний в последующих поколениях
- описывать виды скрещивания, виды взаимодействия аллельных и неаллельных генов;
- находить информацию о методах анализа родословных в медицинских целях в различных источниках (учебных текстах, справочниках, научно-популярных изданиях, компьютерных базах данных, ресурсах Интернет) и критически ее оценивать;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- профилактики наследственных заболеваний;
- оценки опасного воздействия на организм человека различных загрязнений среды как одного из мутагенных факторов;
- оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение)

Личностные УУД обеспечивают ценностно-смысловую ориентацию учащихся (умение соотносить поступки и события с принятыми этическими принципами, знание моральных норм и умение выделить нравственный аспект поведения), а также ориентацию в социальных ролях и межличностных отношениях. Применительно к учебной деятельности следует выделить три вида действий:

- самоопределение личностное, профессиональное, жизненное самоопределение;
- смыслообразование установление учащимися связи между целью учебной деятельности и ее мотивом, другими словами, между результатом учения и тем, что побуждает деятельность, ради чего она осуществляется. Учащийся должен задаваться вопросом о том, «какое значение, смысл имеет для меня учение», и уметь находить ответ на него;
- нравственно-этическая ориентация действие нравственно этического оценивания усваиваемого содержания, обеспечивающее личностный моральный выбор на основе социальных и личностных ценностей.

Регулятивные УУД обеспечивают организацию учащимся своей учебной деятельности. К ним относятся следующие:

- целеполагание как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено учащимся, и того, что еще неизвестно;
- планирование определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий;
- прогнозирование предвосхищение результата и уровня усвоения; его временных характеристик;
- контроль в форме сличения способа действия и его результата с заданным эталоном с целью обнаружения отклонений от него;
- коррекция внесение необходимых дополнений и корректив в план и способ действия в случае расхождения ожидаемого результата действия и его реального продукта;
- оценка выделение и осознание учащимся того, что уже усвоено и что еще подлежит усвоению, оценивание качества и уровня усвоения;
- саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию выбору в ситуации мотивационного конфликта и к преодолению препятствий. **Познавательные УУД** включают общеучебные, логические действия, а также действия постановки и решения проблем.
 - Общеучебные универсальные действия:
- самостоятельное выделение и формулирование познавательной цели;

- поиск и выделение необходимой информации; применение методов информационного поиска, в том числе с помощью компьютерных средств;
- структурирование знаний;
- осознанное и произвольное построение речевого высказывания в устной и письменной форме;
- выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
- рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности:
- смысловое чтение; понимание и адекватная оценка языка средств массовой информации;
- постановка и формулирование проблемы, самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера.
 Особую группу общеучебных универсальных действий составляют знаковосимволические действия:
- моделирование;
- преобразование модели с целью выявления общих законов, определяющих данную предметную область.
 - Логические универсальные действия:
- анализ;
- синтез;
- сравнение, классификация объектов по выделенным признакам;
- подведение под понятие, выведение следствий;
- установление причинно-следственных связей;
- построение логической цепи рассуждений;
- доказательство;
- выдвижение гипотез и их обоснование. Постановка и решение проблемы:
- формулирование проблемы;
- самостоятельное создание способов решения проблем творческого и поискового характера.
 - **Коммуникативные УУД** обеспечивают социальную компетентность и учет позиции других людей, партнера по общению или деятельности, умение слушать и вступать в диалог; участвовать в коллективном обсуждении проблем; интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми. Видами коммуникативных действий являются:
- планирование учебного сотрудничества с учителем и сверстниками определение целей, функций участников, способов взаимодействия;
- постановка вопросов инициативное сотрудничество в поиске и сборе информации;
- разрешение конфликтов выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешение конфликта, принятие решения и его реализация;
- управление поведением партнера контроль, коррекция, оценка действий партнера;
- умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации, владение монологической и диалогической формами речи в соответствии с грамматическими и синтаксическими нормами родного языка.

Формы контроля: тематическое тестирование, составление схем скрещивания, создание тематических презентаций, составление вопросников, тестов силами обучающихся, формирование тематических справочников, защита проектов.

Формы организации учебной деятельности: лекции с элементами беседы, семинары, практические работы, познавательные игры, дискуссии, дифференцированная групповая работа, проектная деятельность обучающихся.

Во вводной части курса рекомендуется основное внимание сосредоточить на общих сведениях о молекулярных и клеточных механизмах наследования генов и формирования признаков; специфических терминах и символике, используемых при решении генетических задач.